Livestock Watering FACTSHEET

Order No. 590.304-4 January 2006

LIVESTOCK WATER SYSTEM DESIGN #4 Design Worksheet

Use this worksheet to do a systematic approach to livestock watering system design.

1. Water Quantity

a) Daily Water Requirements (refer to Factsheet #590.301-1, Table 1)

Beef Cattle	 Х	see table	USgpd	=	 USgpd
Bison	х	12	USgpd	=	 USgpd
Dairy cows	Х	see table	USgpd	=	 USgpd
Fallow Deer	Х	2.5	USgpd	=	USgpd
Horses	 Х	12	USgpd	=	 USgpd
Swine	Х	4	USgpd	=	USgpd
Sheep	Х	2	USgpd	=	USgpd
Chickens	Х	see table	USgpd	=	USgpd
Turkeys	 х	see table	USgpd	=	 USgpd
	=	 USgpd			

b) Peak Flow Rates (refer to *Factsheet #590.304-1*)

			-					
From Daily Requirements Minimum Peak Flow Rate =	s 240	_USgpc	l = minimum	USgpm	Sgpm			
OR,								
From Fixture Flow Rates								
Automatic waterers			X	2	USgpm	=		USgpm
Poultry fountain			x	1	USgpm	=		USgpm
Dairy hose			x	5	USgpm	=		USgpm
Sanitation hose			x	10	USgpm	=		USgpm
Outdoor hydrant			x	5	USgpm	=		USgpm
Household			x	10	USgpm	=		USgpm
Fire hydrant			X	10	USgpm	=		USgpm
	Tota	al Peak	Flow Rates	from	Fixtures	=		USgpm

2. Water Supply

C)	Wells (refer to <i>Factsheet #590.303-2</i> ; for drilled wells, also refer to well log for info)	
	Type of well (dug, driven, drilled, etc)	
	Depth of well	ft
	Diameter of well	in
	Capacity of well (tested flow rate)	USgpm
d)	Springs (for measuring flow, refer to <i>Factsheet #502.100-5</i>)	
	Type of spring (concentrated, seepage, etc.)	
	Flow capacity (free flowing)	USgpm
e)	Flowing Surface Water (for measuring flow, refer to Factsheet #502.100-5)	
	Type of supply (ditch, creek, river, etc.)	
	Maximum capacity at low flows	USgpm
	Licenced capacity	USgpm
f)	Intermittent Storages	
-	Daily Water Requirement: from 1(a)	USgnd
	Minimum Flow Rate = gpd =	USgpm
	60 min/hr x 24 hrs/day	CI
	Actual Supply Flow Rate from source	USgpm
	Peak Flow Rate required: from 1(b)	USgpm
	If the water source flow is less than the peak flow requirements, then the minimum intermittent storequired is twice the daily requirement.	rage
	Intermittent Storage = 2 x USgpd = USgallons (minimum)	
	Note : Storage will assist the daily water supply, but on a daily basis, the Supply Flow Rate from t <i>must be greater</i> than the Minimum Peak Flow Rate required. If not, additional source(s) are	he source required.
g)	Dugout Storages	
	Capacity = Daily Water Requirement x Number of Days for period of use x 1.1 (for losses)	
	Capacity = USgpd x days of use	x 1.1
	= USgallons required for period of use	
	Dugout size (refer to Factsheet #590.303-3)	
	Capacity USgallons	
	Length feet	
	Width feet	
	Depth feet	
	Side Slopes : ratio of run : rise	

h) Water Harvesters (refer to Factsheet #590.303-4)

	Water Requirement	=	Daily Water Requirement x Number of Days for period				
		=			USgpd x	days of use	
		=			USgallons required for period of	fuse	
	Average Annual Precip	oitatior	n at the site	=	inch annually		
	Catchment area	=	1.8 x		USgal Required		
				_	Inches Annual Precipitation		
		=			square feet Catchment Area		
i)	Tank Storage Size (r	efer t	o Factshee	et #5	90.304-7)		
	Storage Requirement				USgallons		
	Round	l Tank	2		Rec	ctangle Tank	
	Tank diameter		ft		Tank length	ft	
	Tank depth		ft		Tank width	ft	

3. Distribution System

For simplicity, set the water source at 0 feet elevation. Elevations below the source are considered negative and pressure is gained. Elevations above the source are positive and pressure is lost (to be supplied by pumping).

Tank depth

ft

j) Elevations

k)

	Water source	2	0	ft	Х	0.433	=	0	psi
	Storage eleva	ation		ft	х	0.433	=		psi
	Waterer A el	evation		ft	х	0.433	=		psi
	Waterer B el	evation		ft	х	0.433	=		psi
	Waterer C el	evation		ft	Х	0.433	=		psi
	Max elevatio	on difference		ft	х	0.433	=		psi
Fri	ction Losse	es							
	Pipe section	Comments	Max flov (USgpm	v)	Length (ft)	Pipe size/typ	pe	Friction loss (psi/100 ft)	Friction loss (psi)
				_					
				_					
				_					
		Where is friction le	oss the wors	t cas	se?				
		Total friction loss	in the worst	case	e is			ps	i

I) Total Pressure Head Required

Press Press Fricti Misc	sure due to elevation differences sure required at highest outlet ion loss (worst case) ellaneous losses (allow minimum 3 psi)	= = =	 psi psi psi psi
Total	Pressure Head Required	=	 psi
Chec for th	k to ensure the pipe selected is sufficient ne total pressure head.		 pipe OK
4. Pump	Specification		
Total hea	nd requiredpsi x 2.31 ft/psi	=	ft
Maximur	n peak flow required	=	 USgpm
			~~ <u>_</u>
Minimun	n pump efficiency (from dealer)	=	%

The horsepower required can be calculated as follows:

H.P. = total head (ft) x maximum flow (USgpm)3960 x pump efficiency

=		ft x	USgpm	=	h.p.
	3960	Х			
		Select th	e nearest size motor		h.p

5. System Check

Check to ensure pressures and flows are sufficient - are there any problem areas?

6. Schematic Livestock Water System Layout

Include water source, elevations, distances and demand flows.

RESOURCE MANAGEMENT BRANCH Ministry of Agriculture and Lands 1767 Angus Campbell Road Abbotsford, BC V3G 2M3 Phone: (604) 556-3100 WRITTEN BY Lance Brown Engineering Technologist Kamloops Office