LIVESTOCK WATER SYSTEM DESIGN \#4 Design Worksheet

Use this worksheet to do a systematic approach to livestock watering system design.

1. Water Quantity

a) Daily Water Requirements (refer to Factsheet \#590.301-1, Table 1)

Beef Cattle	x	see table	USgpd	=	USgpd
Bison	x	12	USgpd	=	USgpd
Dairy cows	x	see table	USgpd	=	USgpd
Fallow Deer	x	2.5	USgpd	=	USgpd
Horses	x	12	USgpd	=	USgpd
Swine	x	4	USgpd	=	USgpd
Sheep	x	2	USgpd	=	USgpd
Chickens	x	see table	USgpd	=	USgpd
Turkeys	x	see table	USgpd	=	USgpd
		Daily Requr	irement	$=$	USgpd

b) Peak Flow Rates (refer to Factsheet \#590.304-1)

From Daily Requirements
Minimum Peak Flow Rate $=$ \qquad USgpd $=$ minimum peak flow rate $=$ \qquad USgpm

OR,

From Fixture Flow Rates

2. Water Supply

c) Wells (refer to Factsheet \#590.303-2; for drilled wells, also refer to well log for info)

Type of well (dug, driven, drilled, etc)
Depth of well $\quad \mathrm{ft}$
Diameter of well _ in
Capacity of well (tested flow rate) USgpm
d) Springs (for measuring flow, refer to Factsheet \#502.100-5)

Type of spring (concentrated, seepage, etc.)
Flow capacity (free flowing) USgpm
e) Flowing Surface Water (for measuring flow, refer to Factsheet \#502.100-5)

Type of supply (ditch, creek, river, etc.)
Maximum capacity at low flows \qquad
Licenced capacity USgpm

f) Intermittent Storages

Daily Water Requirement: from 1(a)		
Minimum Flow Rate $=$gpd	$=\square$	USgpd
USgpm		

Actual Supply Flow Rate from source		
Peak Flow Rate required from 1(b)		USgpm

If the water source flow is less than the peak flow requirements, then the minimum intermittent storage required is twice the daily requirement.

Intermittent Storage $=2 \mathrm{x}$ \qquad USgpd = \qquad USgallons (minimum)

Note: Storage will assist the daily water supply, but on a daily basis, the Supply Flow Rate from the source must be greater than the Minimum Peak Flow Rate required. If not, additional source(s) are required.

g) Dugout Storages

Capacity $=$ Daily Water Requirement \times Number of Days for period of use $\times 1.1$ (for losses)
Capacity $=$
USgpd x days of use x 1.1
$=\quad$ USgallons required for period of use
Dugout size (refer to Factsheet \#590.303-3)

Capacity		USgallons
Length	feet	
Width	feet	
Depth	feet	
Side Slopes	ratio of run : rise	

h) Water Harvesters (refer to Factsheet \#590.303-4)

Water Requirement $=$ Daily Water Requirement x Number of Days for period of use $=$ USgpd x days of use
$=\quad$ USgallons required for period of use

Average Annual Precipitation at the site = \qquad inch annually

Catchment area
$=1.8 \mathrm{x}$
$\frac{\text { USgal Required }}{\text { Inches Annual Precipitation }}$
$=$ \qquad square feet Catchment Area

i) Tank Storage Size (refer to Factsheet \#590.304-7)

Storage Requirement
Round Tank
Tank diameter \qquad ft
Tank depth \qquad

Rectangle Tank

Tank length
Tank width
Tank depth

ft
ft
ft

3. Distribution System

For simplicity, set the water source at 0 feet elevation. Elevations below the source are considered negative and pressure is gained. Elevations above the source are positive and pressure is lost (to be supplied by pumping).

j) Elevations

k) Friction Losses

Where is friction loss the worst case?
Total friction loss in the worst case is \qquad

I) Total Pressure Head Required

Pressure due to elevation differences $\quad=\quad$ ps
Pressure required at highest outlet $\quad=\quad$ psi
Friction loss (worst case)
Miscellaneous losses (allow minimum 3 psi)
$=\quad \mathrm{psi}$
\qquad
Total Pressure Head Required \qquad psi

Check to ensure the pipe selected is sufficient for the total pressure head. \qquad pipe OK

4. Pump Specification

Total head required \qquad psi x $2.31 \mathrm{ft} / \mathrm{psi}$ \qquad ft
Maximum peak flow required \qquad USgpm
Minimum pump efficiency (from dealer) \qquad \%
Pump model (from dealer)

The horsepower required can be calculated as follows:
H.P. $=$ total head (ft) x maximum flow (USgpm)
3960 x pump efficiency

5. System Check

Check to ensure pressures and flows are sufficient - are there any problem areas?

6. Schematic Livestock Water System Layout

Include water source, elevations, distances and demand flows.

